Anti-fibrotic effect of a novel long-acting GLP-1/GIP/Glucagon triple agonist (HM15211) in BDL-induced liver fibrosis mice

Jung Kuk Kim, Hyo Sang Jo, Jong Suk Lee, Hyunjoo Kwon, Jong Soo Lee, Sung Min Bae, Dae Jin Kim, Sang Hyun Lee, and In Young Choi

Hanmi Pharm. Co., Ltd., Seoul, Republic of Korea
Presenter Disclosure

Employee of Hanmi Pharm. Co., Ltd.
Background

Essential role of hepatic stellate cell (HSC) in liver fibrosis
Proposed modes of action (MoA) for direct anti-fibrotic effect by HM15211

*Potent hepatic lipid lowering and MoAs presented (2018 ADA, 1106-P)

*Anti-inflammatory effect and MoAs presented (2020 ADA, 1804-P)

Inhibition of HSC activation

Inhibition of activated HSC fibrogenesis

LAPSTriple agonist (HM15211)
Experimental scheme

C57BL/6 mice (n = 10/group)

BDL: Bile-duct ligation

Drug treatment for 2 wks

Fibrosis onset and progression

Model	Key highlights	Poster #
AMLN/TAA mice | Anti-inflammatory effect and MoA; Anti-fibrotic effect | 1804-P |
BDL mice | Direct anti-fibrotic effect and MoA | 1803-P |
CDHFD mice | BW loss-independent efficacy in NASH and fibrosis | 1830-P |
Figure 1. HM15211 effect on hepatic hydroxyproline and fibrosis score

- Significant reduction both in hepatic hydroxyproline contents and fibrosis score by HM15211 in BDL mice
- Greater efficacy than obeticholic acid (OCA) suggests more therapeutic benefits of HM15211 in fibrosis

(a) Hepatic hydroxyproline contents
- Study #1
- Study #2

(b) Fibrosis score
- Study #1
- Study #2

Significant reduction both in hepatic hydroxyproline contents and fibrosis score by HM15211 in BDL mice. Greater efficacy than obeticholic acid (OCA) suggests more therapeutic benefits of HM15211 in fibrosis.

- Sham, Vehicle
- BDL, Vehicle
- BDL, Obeticholic acid 30 mg/kg, QD
- BDL, HM15211 1.3 nmol/kg, Q2D (2 mg/wk in human)
Figure 2. HM15211 effect on hepatic collagen deposition (study #1)

- HM15211 treatment was associated with greater reduction in Sirius red positive area than OCA, confirming anti-fibrotic effect of HM15211 in BDL mice

(a) Representative image for Sirius red staining

(b) Sirius red positive area

- Sham, Vehicle
- BDL, Vehicle
- BDL, Obeticholic acid 30 mg/kg, QD
- BDL, HM15211 1.3 nmol/kg, Q2D (2 mg/wk in human)

[Scale bar: 300 μm]

† Similar reduction in Sirius red positive area was observed in study #2 (data not shown)
Consistently, improvement at blood fibrosis surrogate markers further supports anti-fibrotic effect of HM15211. Decrease in blood TGF-β level suggests the mitigation of HSC activation by HM15211.

Figure 3. HM15211 effect on blood surrogate marker level (study #1)

- (a) TGF-β
- (b) TIMP-1
- (c) Hyaluronic acid

Sham, Vehicle
BDL, Vehicle
BDL, Obeticholic acid 30 mg/kg, QD
BDL, HM15211 1.3 nmol/kg, Q2D (2 mg/wk in human)

††† Similar reduction in blood fibrosis surrogate marker was observed in study #2 (data not shown).
Figure 4. HM15211 effect on collagen secretion in HSC

HM15211, but not OCA, reduced TGF-β induced collagen secretion both in LX2 cells and rat primary HSCs, demonstrating direct inhibitory effect of HM15211 on fibrogenesis of activated HSC.

(a) LX2 cells
(b) Rat primary HSCs
Conclusion

• HM15211, a novel long-acting GLP-1/GIP/Glucagon triple agonist, is designed to treat NASH and fibrosis

• In BDL mice, HM15211 confers significant improvement in fibrosis regardless of model induction period

• Hence, better efficacy than OCA highlights anti-fibrotic effect of HM15211

• HM15211, but not OCA, not only reduced TGF-β production, but also inhibited collagen secretion by HSC in the presence of TGF-β, clarifying negative modulation of HSC activation as a MoA for anti-fibrotic effect by HM15211

• For human efficacy translation, clinical studies in biopsy-proven NASH and fibrosis patients are on-going